研究所課程
110學年度入學適用
包含本系開設之核心課程或M字頭課程。核心課程可參考研究所修業規定,M字頭課程可參考下方課程,根據每學期開設之課程有所異動。
課程(學分數) |
---|
研究所課程介紹 Course introduction
-
CourseInstructorCreditIntroduction
-
動力氣候學隋中興3本課程介紹大氣–海洋平均氣候與低頻震盪的特徵及動力過程,特別是熱帶多尺度波動。主要介紹 ITCZ 和年週期變化,熱帶氣旋與波動,季節內振盪、年際震盪(如厄爾尼諾–南方濤動,印度洋偶極子)、年代際變化。課程著重理論和概念模型的講授,以利學生理解觀測現象背後的物理機制。授課對象為具備大氣–海洋科學背景的大四及研究所學生。
-
大尺度雲與水汽過程隋中興2The Earth climate is uniquely regulated by water vapor and clouds that are governed by convective processes of highly fluctuating nature. Yet, climate oscillations of different spatiotemporal scales exhibit surprisingly coherent large-scale structure. This indicates interactions of water cycles among water vapor, clouds, circulation, and radiation of different scales are essential climate processes that must be treated properly for seamless weather to S2S (subseasonal to seasonal) prediction. This course is designed to be a graduate level (both MS and Ph.D.) course, with an emphasis on interactions of convective processes (in PBL, shallow and deep clouds) with selected weather and climate disturbances. One half of the course is taught by lectures covering fundamental convective processes, bibliographic survey, literature review [basic and general references]. The rest of the course time will be devoted to observational and modeling analysis for specific subjects within the scope of this course. Students’ interests will be considered in determining the subjects. For example, the course may focus on modulations of convection by cold surges, tropical cyclones, intraseaonal oscillations, or ENSO.
-
高等數值天氣預報楊明仁3This course will introduce the advanced applications of numerical weather prediction (NWP), mainly using the WRF model. The spectral and pseudospectral methods typically used in the global model and tropical cyclone studies will be discussed. Relaxation method used in solving the Laplace and Possion equations will be presented. Several methods for lateral boundaries used in regional models will be discussed. Class projects based on the material covered in this class will be assigned. Students taking this course are assumed to have the basic knowledge of finite-difference methods and numerical analysis.
-
深對流特論楊明仁3The physical and dynamical processes of deep cumulus clouds, which usually occur in mesoscale convective systems (MCSs), tropical cyclones and cloud clusters, and orographic precipitation will be introduced. Examples of important deep-convection phenomena near the Taiwan area, such as typhoons and MCSs within a Mei-Yu front, and their associated dynamics will be demonstrated and discussed.
| Lecture Outline:
1. Types of Convective Clouds in Earth’s Atmosphere
2. Basics of Cloud Microphysics
3. Basics of Cloud Dynamics
4. Cumulonimbus and Severe Storms
5. Mesoscale Convective Systems
6. Dynamics and Precipitation in Tropical Cyclones
7. Instabilities within Deep Convection
8. Gravity Waves Generation and Propagation -
大氣海洋流體力學特論郭鴻基1Earth’s atmosphere and ocean exhibit complex patterns of fluid motion over a wide range of space and time scales. The slow-manifold dynamics, as well as the scale interactions, are of vital importance. This is a special short course focusing on the large-scale atmosphere-ocean fluid dynamics (AOFD), the geostrophic turbulence (i.e., 2D turbulence) dynamics and some related topics. The theory of geostrophic turbulence relies on two important components: a conservation principle that energy and potential vorticity are nearly conserved and an irreversibility principle that breaks the time-reversal symmetry of the exact inviscid dynamics. The AOFD can be understood quite simply in the form of isentropic fluid dynamics. The course may be useful for people who are interested in the understanding of the climate, weather, physics, chemistry, and/or biology of Earth’s fluid environment.
| This course contains
1. Conservation laws and basic equations –
Rotation and stratification; potential temperature/density; the primitive equations; The vertical transform and shallow-water equations
2. Circulation, vorticity, absolute vorticity and potential vorticity –
Helmholtz theorem, Gauss’ theorem, Stoke’s theorem, and Kelvin circulation theorem; Bjerknes solenoidal term, Rossby and Ertel’s potential vorticity (PV) equation; Impermeability theorem of PV substance.
3. Potential vorticity conservation and isentropic fluid dynamics –
thermodynamic reversibility and entropy, diabaticity and mixing, the equations of motion in isentropic coordinates, Ertel’s PV and entropy conservation Quasi-geostrophy in isentropic coordinates
4. Slow manifold quasi-balanced dynamics and 2D turbulence –
Bachelor’s hypothesis, selective decay of enstrophy; geostrophic adjustment, secondary circulation equation; examples in vortex dynamics and filamentations.
5. Hamiltonian formulation [*optional] Re-derivation of isentropic equations; particle-re-labelling symmetry and PV conservation (Chapter 7.2 of Salmon); non-canonical Hamiltonian dynamics and PV as a Casmir (Chapter 7.10 of Salmon) -
高等大氣動力學郭鴻基3因應地球科學跨領域研究,高等大氣動力學課程的安排,除了傳統大氣動力學外,更廣泛包括大氣海洋流體力學 (Atmospheric Oceanic Fluid Dynamics, AOFD);課程也將加入新元素:例如探討空氣、水等流體性質對於生命科學與生物的影響;探討非線性動力數學建模,包含多重平衡與穩定、回饋、遲滯、同步、尺度分析等課題。課程重視數學思考與模式計算。
-
氣候診斷盧孟明、隋中興2短期氣候預測的預測目標有週、月、季、年等不同時間長度,預測期間天氣與氣候變化持續受到海陸氣之間的相互作用影響。監測分析不同時間尺度的氣候變化並診斷造成變化的主要因素,是了解區域氣候和全球變化的關係、詮釋極端天氣與氣候的關係、以及設計預報模式產品應用方法的基礎。
本課程適合研究所程度(碩、博)學生選修,著重在根據觀測資料詮釋氣候系統內部不同尺度變異,運用統計方法分析各種時空尺度的常見的現象,藉由課堂討論演練氣候知識的溝通與傳遞。上課方式有授課、討論、學生報告三部分,課程 50% 講授世界主要作業或研究中心目前進行實時 (real-time) 氣候監測及預報的主要項目、背景知識、使用方法,另 50% 配合學生自選的學期報告研究主題講授與討論相關研究進展。 -
氣候變異與預測盧孟明3氣候變異概指由大氣、海洋、陸表共同組成的氣候系統相對於三十年或更長時期平均狀態的偏離程度,重要現象有以週、月、季、年為時間單位的短期氣候變化,以及與其相依相存的年代(十年)、多年代、世紀等長週期緩慢變化。氣候變異的發生機制決定於大氣、海洋、陸表交互作用的過程,了解這些過程以及各主要變異模態對全球和區域氣候的影響是發展氣候預測的科學基礎。
本課程著重在時間尺度在三十年之內的氣候自然變化和預測,不包含尺度更長的氣候變遷或人為因素對氣候影響等課題。主要對象為碩博士班研究生,側重了解氣候變異主模態的現象與形成機制,氣候模式對氣候變異的模擬和預測能力,氣候可預測度來源的分析與解釋,氣候變異主模態與東南亞和西北太平洋以及臺灣天氣與氣候的關係。約三分之二的課程內容為講述動力氣候基本概念與文獻閱讀和討論,另三分之一為全球觀測和預測資料分析及討論。為加強對課程內容的了解,將有作業和期中考試,也將由學生在課程範圍內自己挑選想深入了解的研究題目在課堂討論並撰寫期末報告。 -
熱帶氣候動力專題(1)-MJO盧孟明1本課程為熱帶動力的進階課程,適合研究所程度(碩、博)學生選修。內容將以專題方式邀請研究成果豐富的學者在不同學期講授熱帶最主要的四個研究主題:麥儒振盪、季風、聖嬰—南方震盪、氣候基本場,並進行書報討論與專題演練。本學期主題為麥儒振盪 (MJO),包含MJO的 (1) 觀測特性 (2) 向東傳遞與行星尺度的選擇 (3) 夏季向北傳遞 (4) 激發機制 (5) 海氣相互作用與年際變化。
-
熱帶氣候動力專題(2)-BSISO盧孟明1本課程為熱帶動力的進階課程,適合研究所程度(碩、博)學生選修。內容將以專題方式邀請研究成果豐富的學者在不同學期講授熱帶最主要的四個研究主題:麥儒振盪、季風、聖嬰─南方震盪、氣候基本場,並進行書報討論與專題演練。本學期主題為北半球夏季季內震盪 (BSISO),為麥儒振盪 (MJO) 在夏季的偏移,包含 BSISO 的 (1) 觀測特性 (2) 傳遞與行星尺度的選擇 (3) 激發機制 (4) 海氣相互作用與年際變化。
-
全球大氣環流黃彥婷3本課程介紹大尺度大氣環流之特徵與機制。利用漸進式複雜度的概念模型與數值模擬,連結理論與觀測。主題包括:控制哈利環流之強度與邊界的因子(這也控制了降雨分佈),中緯度波動與平均環流之交互作用(解釋西風帶),以及三維大氣環流(季風、中緯度風暴路徑等)。
-
雲動力學吳健銘3This course focuses on the general dynamics of cloud systems. Models of fog, stratocumulus, shallow cumulus, deep cumulus, and orographic convection will be presented. Classes will include presentations by the instructor and students. Material covered in class will be supplemented by homework assignments, which require coding abilities. The class will conclude with student presentations on a chosen project.
Class discussions will be held at the end of each topic or main subsection to discuss science questions arising from the material just presented. Each student is expected to have thought about such questions independently and be able to present these in class if called on.
| The course contains
1. Introduction on cloud dynamics –
Government equations in simulating convective clouds in the atmosphere, Turbulence closure and Large Eddy Simulation on clouds
2. Fogs and Stratocumulus Clouds –
Formation and dissipation mechanisms, Mixed layer model
3. Shallow cumulus –
Boundary layer cumulus, Theories of entrainment, Detrainment in cumulus clouds, Mass flux cloud model
4. Deep cumulus –
Cloud/environment profiles, Parcel model and cumulus parameterization
5. Orographic Systems –
Theory of flow over hills and mountains, Orographic precipitation over complex topography -
地球系統模式—物理過程吳健銘3本課程將介紹地球系統模式之對流過程並分單元授課。主要介紹如何在大尺度模式中表示積雲對流的過程,稱為對流參數化,將使用高解析大渦模式 (LES),雲解析模式 (CRM) 之模擬結果簡化成概念模式。本課程課程內容包含講演與模式實作與分析。將分為下述課題: 次網格參數化,對流的時空尺度分析,準平衡過程,雲模式,統合參數化,以及未來的地球系統模式之介紹。
-
陸地大氣交互作用羅敏輝3Feedbacks between land and atmosphere play a central role in the interactive functioning of the Earth's climate. The goal of this course is to understand the essential aspects of roles of land processes in the climate systems.
| Topics covered include
1. basics of terrestrial surface energy, water and carbon balances
2. ecohydrology
3. land use and land cover changes.
Students will read several critical papers in these topics, and will also learn to design, perform, and analyze numerical climate experiments/outputs with a land surface model and climate model for their final project. -
中尺度氣象學游政谷2隨著近年來觀測儀器(技術)的進步以及高解析度數值模式的廣泛應用,使得我們慢慢了解到,較劇烈且具傷害力的天氣現象(如強烈降水與風暴)常侷限於中小尺度的範疇。可是由於發生這些劇烈天氣的原因相當多樣化且複雜,傳統的綜觀氣象理論基礎已無法滿足我們對於這些現象的了解。本課程的主要目的為介紹實際大氣中的中尺度天氣現象,並就各種不同的中尺度天氣系統,廣泛說明它們內部的結構與隱含的物理與動力過程。這其中,現階段的了解為授課重心,然而目前最新的研究成果也會在課堂上適時予以補充說明。
| 課程內容將針對下列主題作有系統的闡釋
1. 中尺度的基本概念
2. 氣象都卜勒雷達觀測原理
3. 大氣對流的觀念與擾動氣壓診斷
4. 中緯度及熱帶中尺度對流系統
5. 劇烈風暴
6. 地形降水 -
地物流力陳世楠3This is an upper-level undergraduate and graduate-level course on geophysical waves and instability. We will focus on slowly evolving flow that is nearly in geostrophic balance and thus satisfies the "Quasi-geostrophic (QG) approximation".
| The primary subjects are
1. Quasi-geostrophy
2. Rossby wave
3. Baroclinic instability
4. Introductory wave-mean-flow interaction + Geostrophic turbulence
The course format is a combination of lectures and student project, with student-led presentation/discussion. -
雲與環境專題討論陳維婷3本課程主旨在討論研究「台灣極端空氣汙染事件在不同天氣型態下之特性」,經由對觀測與模擬資料之分析瞭解當前東亞綜觀天氣型態下台灣 PM2.5 與環境條件、邊界層、雲物理、輻射收支、大尺度環流之關係,討論其中牽涉之物理過程,並推估未來氣候變遷情境下台灣 PM2.5 高汙染事件的可能改變。
-
氣候變遷科學陳維婷2本課程旨在介紹氣候變遷科學的基礎關鍵知識,包括氣候系統的物理過程,氣候模式的發展及應用,未來氣候推估的解讀,以及氣候變遷對環境及社會的潛在影響。
學生實作活動包括閱讀整理氣候變遷報告與相關文獻,氣候資料分析,以及全球和區域氣候變遷最新議題的討論。 -
資料同化連國淵3在地球科學的數值模擬與分析中,資料同化為一個重要的領域。藉由基於統計理論的資料同化技術,我們可使觀測資訊被客觀且最佳化地採用於數值模式中,得到模式分析場,對初始化模式預報與氣候研究皆相當重要。
本課程介紹資料同化的概念,研習地球科學領域中數種常用的資料同化方法,包括從簡單的內插法到如變分資料同化以及系集卡爾曼濾波器等進階的方法。亦將介紹本領域中最新的進展,以及其在作業數值天氣預報中的實作與應用。